Последняя треть ХХ столетия ознаменовалась бурными событиями в жизни человеческого общества. Глубокие сдвиги в экономических, политических, общественных структурах периодически взрывают устоявшийся, казалось бы, порядок вещей, вызывают бурный, непредсказуемый ход событий. В основе этих движений — научно-технический прогресс, темпы которого все более ускоряются.

Произошла целая серия технологических и фундаментальных открытий в области электроники, радиофизики, оптоэлектроники и лазерной техники, современного материаловедения («новые материалы”), химии и катализа, создание современных авиации и космонавтики, бурное развитие информационных технологий, поразительные результаты в области микро- и наноэлектроники породили производство наукоемких продуктов, в основе которых лежат наукоемкие технологии, за счет которых происходит экономическое развитие в последние годы. Поэтому научно-технический прогресс в последние десятилетия приобретает ряд новых черт. Новое качество рождается в сфере взаимодействия науки, техники и производства. Одно из проявлений этого — резкое сокращение срока реализации научных открытий: средний период освоения нововведений составил с 1885 по 1919г. 37 лет, с 1920 по 1944г. — 24 года, с 1945 по 1964г. — 14 лет, а для наиболее перспективных открытий (электроника, атомная энергетика, лазеры) — 3-4 года. Произошло, таким образом, сокращение этого периода до продолжительности строительства крупного современного предприятия. Это означает, что появилась фактическая конкуренция научного знания и технического совершенствование производства, стало экономически более выгодным развивать производство на базе новых научных идей, нежели на базе самой современной, но «сегодняшней” техники. В результате изменилось взаимодействие науки с производством: раньше техника и производство развивались в основном путем накопления эмпирического опыта, теперь они стали развиваться на основе науки — в виде наукоемких технологий. Это технологии, в которых способ производства конечного продукта включает в себя многочисленные вспомогательные производства, использующие новейшие технологии. В наукоемких отраслях высоки темпы научно-технического прогресса. Например, в ключевой области современного НТП — микроэлектронике — скорость накопления опыта характеризуется ежегодным удвоением сложности и объема выпуска интегральных схем при 30-процентном снижении издержек и цен.

В этих условиях отставание чревато не только потерей позиций в данной отрасли, но и безнадежным отставанием отраслей, где широко применяется электроника — в таких наукоемких отраслях как лазеры, авиастроение, отдельные виды машиностроения и др. Эти технологии используют многочисленные достижения фундаментальных и прикладных наук. Скорость появления новых изобретений и совершенно новых направлений исследований, которые иногда становятся самостоятельными отраслями научного знания способствует увеличению скорости морального износа уже имеющейся техники и технологии. Следующее за этим обесценение постоянного капитала вызывает значительный рост издержек, падение конкурентоспособности. Поэтому у производителей высок интерес к научным знаниям, они заинтересованы в контактах с наукой.

Кроме того, наукоемкие технологии не представляют собой изолированные, обособленные потоки. В целом ряде случаев они связаны и обогащают друг друга. Но для их комплексного использования необходимы фундаментальные разработки, открывающие новые сферы применения новейших процессов, принципов, идей. Чрезвычайно важны также распространение одной и той же научно-технической идеи в другие отрасли, адаптация новых методов и продуктов для других сфер, формирование новых секторов рынка.

Генетика, цитология, этология, теория относительности, социология, психоанализ и экология. Почему эти науки были объявлены в СССР «буржуазными лженауками»?
В конце 40-х и начале 50-х годов XX века в физике, биологии, математике, астрономии, химии возникли группы ученых, которые утверждали, что те или иные научные теории являются идеалистическими и должны быть исправлены или заменены материалистическими учениями.
В августе 1948 года состоялась знаменитая сессия ВАСХНИЛ (Всесоюзной академии сельскохозяйственных наук имени Ленина). Заседание, состав участников и докладчиков которого был тщательно подобран, признало единственно верным биологическое учение Трофима Денисовича Лысенко. В СССР начался погром генетики. Биологов выгоняли с работы, сажали в тюрьмы. Новое учение утверждало, что рожь может породить пшеницу, а елка — березу.


Трофим Денисович Лысенко после избрания его академиком Всеукраинской академии наук, 1934 год
Группы ученых-партийцев стремились сместить устоявшиеся теории, проверенные на многочисленных опытах. Так, в апреле 1951 года в Москве прошло Совещание по космогонии солнечной системы, на котором говорилось, что «кризис и разброд в зарубежной астрономии отражает противоречия загнивающего капиталистического общества». Зарубежные астрономические теории были отвергнуты как идеалистические.
Идеологическая цензура нанесла серьезный урон развитию наук в СССР
Физики-материалисты, как они себя называли, планировали в физических науках преобразования, которые по форме, сути, глубине и масштабам были бы аналогичны незадолго до того прошедшим преобразованиям в биологии.
Одним из основных объектов их критики была теория относительности Эйнштейна. Материалисты признавали, что эйнштейновская формула соотношения массы и энергии подтверждается на опыте и лежит в основе расчетов ядерных реакций, но, тем не менее, объявляли все учение ложным.
Другим объектом их критики были «воззрения копенгагенской школы» в физике микромира. Фактически отвергалась вся квантовая механика. Также подвергалась критике теория вероятности, в частности, понятие «математического ожидания».

Выступление Лысенко в Кремле. За ним (слева направо) Косиор, Микоян, Андреев и Сталин, 1935 год
Почему же запретили «буржуазные лженауки»?
Генетика
Забота партии о науке заключалась, прежде всего, в приведении научной картины мира в соответствие с идеологией диалектического материализма и коммунистическими лозунгами. Генетика же утверждала, что каждая личность уникальна и неповторима, и что многие не только физические, но и психические качества определены от рождения и лишь частично поддаются влияниям среды и внешней коррекции. Диалектический же материализм оценивал научную теорию не с точки зрения ее соответствия фактам, а с точки зрения господствующих философских догм и соответствия атеистическому мировоззрению.
Генетика вторглась в пределы идеологических сфер и шла в разрез с существующей картиной мира по Марксу и Ленину.
Лысенко:»Генетика — продажная девка империализма». Цитология
Цитология (наука о клетке) изучает, как построена живая клетка, и как она выполняет свои нормальные функции. В клетке находятся хромосомы, а хромосомы содержат гены. Гены изучает генетика, а генетика — «продажная девка империализма». Следовательно, цитология тоже должна быть под запретом. Вот такая вот логика.
Этология
Вплоть до середины 1960-х годов в СССР этология, в сущности, была под запретом и считалась «буржуазной лженаукой», а этология человека сохраняла этот статус вплоть до 1990-х годов. Почему? Потому что уж слишком явными становятся причины поведения лидеров. И эти причины не всегда оказываются моральными и гуманистическими…
Другим основанием, по которому Конрад Лоренц, основоположник этологии, и сама наука были под запретом, послужило участие ученого во Второй Мировой войне на стороне нацистов (в результате чего он даже побывал в русском плену). Хотя второй «отец» этологии, голландец Николаас Тинберген, участвовал в Сопротивлении и был заключен за это в нацистский концлагерь.

Николаас Тинберген (слева) и Конрад Лоренц, 1978 год
Теория относительности Эйнштейна
На деле теорию относительности не смогли запретить, потому что она была необходима для создания атомной бомбы. Ее использовали на практике, но на словах идеи Эйнштейна были объявлены «ложными». Получился так называемый «дуализм» в советской науке: теория считалась ошибочной, но активно применялась в жизни.

Взгляды Эйнштейна были «несостоятельны, антинаучны и враждебны науке».
Социология
Во времена СССР запрет на социологическую теорию проистекал из ее противостояния марксизму-ленинизму. Поскольку считалось, что это учение и есть советская социология (так считало и правительственное крыло социологов 60 — 70-х годов XX века), то развивать какую-то другую теорию запрещалось. Был введен запрет на изучение основных проблем общества, власти и собственности, не говоря уже о десятках конкретных тем, начиная от стратификации (социального неравенства) и заканчивая с*ксом.

Иван Дмитриевич Ермаков — один из пионеров психоанализа в СССР
Психоанализ
Первоначально психоанализ пережил период бурного расцвета в начале 1920-х годов, когда Иван Дмитриевич Ермаков открыл Государственный психоаналитический институт, издал переводы работ Фрейда и Юнга. Затем был отвергнут, как «буржуазное учение» и практически не развивался. Почему? Потому что фундаментальный предмет изучения психоанализа — бессознательные мотивы поведения, берущие начало в скрытыхполовых расстройствах, — никак не вязался с осознанной борьбой угнетаемого пролетариата с капиталистическими эксплуататорами. И вообще, какой с*кс?! В СССР его не было.
Генетика, психоанализ и экология были объявлены «буржуазными лженауками».
Экология
На экологию в СССР тоже было наложено табу. Данные науки объективно показывали заметное отставание «страны победившего социализма» от «загнивающего Запада» по многим параметрам качества жизни, в том числе по таким фундаментальным как общественное здоровье и качество окружающей среды. Поэтому экология человека не только не развивалась, но само ее существование в Советском Союзе всячески осуждалась. На базе марксистско-ленинской философии горе-теоретики доказывали, что экология человека — «буржуазная лженаука», которая базируется на ложных концепциях и представляет собой вариант социал-дарвинизма. Но принципы, лежащие в основе экологии человека, постепенно пробивали себе дорогу, и, в конце концов, она завоевала свое место в современной отечественной науке.
«РАЗГРОМ» КИБЕРНЕТИКИ
Много внимания антисталинисты уделяют разгрому кибернетики, который будто бы имел место после войны. Но давайте посмотрим, а что же произошло. Действительно, в 1947 году вышло постановление ЦК ВКП(Б), в котором, например, кибернетика объявлялась одним из проявлений «Злобных» происков империализма. Вот и весь разгром. Тем не менее книги американского математика Норберта Винера были запрещены и ряд кибернетиков вынуждены были сменить специальность. Так, изданная в 1948 году его книга «Кибернетика, или Управление и связь в животном и машине” попала не к широкой научной общественности, а в спецхран, поскольку Винер был убежден, что социальные модели управления и модели управления в обществе и экономике могут быть проанализированы на основе тех же общих положений, которые разработаны в области управления системами, созданными людьми. Эти идеи не согласовались с официальными доктринами, пропагандируемыми марксизмом.
А второй пример — из секретного протокола закрытого ученого совета института электротехники и теплоэнергетики АН УССР от 8 января 1950 года, где с докладом о ходе работ над ЭВМ выступил создатель МЭСМ С. А. Лебедев. Доклад был встречен с интересом, доброжелательно, вопросы задавались толковые, все старались помочь и поддержать. Но среди присутствующих был и некий бдительный академик Швец. По сути проекта он не высказался — наверное, так ничего и не понял. Но «со всей остротой» поставил вопросы о том, Лебедев «не борется за приоритет АН УССР по этой работе», «комплексирование работы проводится недостаточно». А самое главное, указал, что «не следует использовать в применении к машине термин «логические операции», машина не может производить логических операций; лучше заменить этот термин другим».
Вот и вся история «преследования кибернетики». Обычные склоки и интриги среди ученой братии.
Настоящую же атаку на кибернетику начала «Литературная газета» 5 апреля 1952 г. статьей Ярошевского «Кибернетика — «наука» мракобесов». В конце 1953 г. в журнале «Вопросы философии» № 5 под псевдонимом «Материалист» публикуется статья «Кому служит кибернетика?» В том же году кибернетику обвиняют во всех смертных грехах издатели сборника «Теория передачи электрических сигналов при наличии помех». В предисловии к этому сборнику говорится: «Все эти попытки придать кибернетике наукообразный характер с помощью заимствованных из другой области терминов и понятий отнюдь не делают кибернетику наукой — она остается лженаукой, созданной реакционерами от науки и философствующими невеждами, находящимися в плену идеализма и метафизики».
В четвертом издании «Краткого философского словаря» (1954 г.) кибернетика определена как «реакционная лженаука, возникшая в США после второй мировой войны и получившая широкое распространение в других капиталистических странах; форма современного механицизма».
Для характеристики кибернетики в отечественных публикациях использовались такие слова, как пустоцвет, лженаука, идеологическое оружие империалистической реакции, порождение лакеев империализма и т.п.
Вот и вся история «преследования кибернетики». Обычные склоки и интриги среди ученой братии. Технари делали машины, двигали прогресс, а «философы», которые ничего не умели делать, бдительно бдили, чтобы кто не подумал, что машина может думать или хотя бы производить логические операции. Вся эта словесная шелуха не мешала быстрому развитию компьютерного дела в стране.
Термин «кибернетика» ввел древнегреческий ученый Платон как науку управления особыми объектами, имеющими в своем составе людей — эти объекты он называл «гиберно». Это могла быть и административная единица — земля, заселенная людьми, и корабль. По Платону, построенный и снаряженный корабль — это просто вещь, а вот корабль с экипажем — это уже «гиберно», которым должен управлять специалист — «кибернет», кормчий, по-русски. Если исходить из того, что человек — биологически по крайней мере, то же животное, то становится ясным, откуда взялось название книги Винера «Кибернетика, или Управление и связь в животном и машине». Новое, как говорится, это хорошо забытое старое. Кстати, обрусевшие слова «губернатор», «губерния», «гувернер» — все происходят от термина, который ввел Платон. Да и английское government -правительство, имеет тот же генезис. Кибернетикой — в исходном, платоновском смысле, в начале XIX века занимался Ампер, поместивший ее на третье место в своей классификации наук, а чуть позже него -блестящий польский ученый Болеслав Трентовский.
Определяясь в том, что же такое кибернетика, хотелось бы сослаться на мнение академика Глушкова, блестящего ученого, математика, инженера, эрудита и интеллектуала, глубочайшего знатока не только технических и математических дисциплин, но трудов Гегеля и Ленина. Созданное им семейство ЭВМ «МИР» опередило на двадцать лет американцев — это были прообразы персональных компьютеров. В 1967 году фирма IBM купила «МИР-1» на выставке в Лондоне: у IBM был спор о приоритете с конкурентами, и машина была куплена для того, чтобы доказать, что принцип ступенчатого микропрограммирования, запатентованный конкурентами в 1963 году, давным-давно известен русским и применяется в серийных машинах. Глушков трактовал кибернетику, как науку об общих закономерностях, принципах и методах обработки информации и управления сложными системами, при этом ЭВМ трактовалась как основное техническое средство кибернетики.
Если проехать от метро «Ленинский проспект» несколько остановок на троллейбусе, то по адресу Ленинский проспект, 51 можно увидеть утопающий в зелени деревьев типичный сталинский «дворец науки» -огромное здание с колоннами на фасаде. Это ИТМВТ, Институт точной механики и вычислительной техники имени С. А. Лебедева. Он создан в 1948 году для разработки электронных вычислительных машин -основного технического средства кибернетики, по определению Глушкова.
Директор Института математики и, по совместительству, вице-президент АН УССР Лаврентьев написал Сталину письмо о необходимости ускорения исследований в области вычислительной техники, о перспективах использования ЭВМ. Сталин, прекрасно ориентирующийся в перспективных направлениях науки, отреагировал немедленно: по его распоряжению был создан ИТМВТ и его директором был назначен М. А. Лаврентьев.
В том же 1948 году под началом доктора физико-математических наук С. А. Лебедева начинаются работы по созданию МЭСМ (малой электронной счетной машины) в Киеве.
В конце 1948 года сотрудники Энергетического института им. Крижижановского Брук и Рамеев получают авторское свидетельство на ЭВМ с общей шиной, а в 1950-1951 гг. создают ее. В этой машине впервые в мире вместо электронных ламп используются полупроводниковые (купроксные) диоды.
В начале 1949 года в Москве на базе завода САМ были созданы СКБ-245 и НИИ Счетмаш. В начале 50-х в Алма-Ате была создана лаборатория машинной и вычислительной математики.
Самое интересное, что работа над аналоговыми машинами была начата еще до войны, задолго до постановления по кибернетике. И в 1945 году первая в СССР аналоговая машина уже работала. До войны же были начаты исследования и разработки быстродействующих триггеров -основных элементов цифровых ЭВМ.
Министром машиностроения и приборостроения СССР Сталин назначил П. И. Паршина, прекрасного специалиста и знатока своего дела. И вот, когда на совещании в ИТМВТ один из руководителей лабораторий, Л. И. Гутенмахер, предложил строить ЭВМ на электромагнитных бесконтактных реле (они намного надежнее электронных ламп, хотя работают медленнее), Паршин тут же придумал увеличить силу тока в питающей обмотке реле — а это позволило сократить число витков в обмотке до одного, значит, сделать реле технологичным, приспособленным для массового производства.
РЕЗУЛЬТАТЫ «ПРИТЕСНЕНИЯ» КИБЕРНЕТИКИ
В результате «преследования кибернетики», в котором обвиняют Сталина, в СССР была создана новая мощная отрасль науки и техники, созданы научно-исследовательские институты и заводы, производящие кибернетические устройства. Созданы научные школы, подготовлены кадры, написаны учебники, в вузах начали читать новые дисциплины, готовить специалистов по кибернетике.
В СССР МЭСМ была запущена в то время, когда в Европе была только одна ЭВМ — английская ЭДСАК, запущенная на год раньше. Но процессор МЭСМ был намного мощнее за счет распараллеливания вычислительного процесса. Аналогичная ЭДСАК машина — ЦЭМ-1 — была принята в эксплуатацию в Институте атомной энергии в 1953 году — но также превосходила ЭДСАК по ряду параметров.
Разработанный лауреатом Сталинской премии, Героем социалистического труда С. А. Лебедевым принцип конвейерной обработки, когда потоки команд и операндов обрабатываются параллельно, применяется сейчас во всех ЭВМ в мире.
Построенная, как развитие МЭСМ новая ЭВМ БЭСМ в 1956 году стала лучшей в Европе. Созданный в Швейцарии Международный центр ядерных исследований пользовался для расчетов машинами БЭСМ. Во время советско-американского космического полета «Союз-Аполлон» советская сторона, пользующаяся БЭСМ-6, получала обработанные результаты телеметрической информации за минуту — на полчаса раньше, чем американская сторона.
В 1958 году была запущена в серию машина М-20, которая стала самой быстродействующей ЭВМ в мире, а также М-40 и М-50, ставшие «кибернетическим мозгом» советской противоракетной системы, созданной под руководством В. Г. Кисунько и сбившей в 1961 году реальную ракету — американцы смогли повторить это только через 23 года.

Специалисты-кибернетики сталинского призыва создавали мощнейшую вычислительную технику, все высшие достижения СССР в этой области связаны с их именами. Работали они по сталинским идеям — с опорой на собственные силы, свои идеи, свои ресурсы. Но Сталин умер. «Преследования» кибернетики кончились и дело пошло наперекосяк. Катастрофой стало принятое в 1967 году решение руководства СССР перейти на «обезьянью политику» — копировать американскую вычислительную технику, запустить в производство машины IBM-360 под названием Единая Система «Ряд».
«А мы сделаем что-нибудь из «Ряда» вон выходящее!» — горько шутил С. А. Лебедев, один из первых руководителей сталинского ИТМВТ. И как он ни боролся за самобытный, лучший путь развития нашей вычислительной техники, то самое низкопоклонство перед западом, с которым упорно боролся Сталин одержало верх. Это подорвало силы ученого, в 1974 году он умер. А ИТМВТ было присвоено его имя, имя лауреата Сталинской премии Сергея Алексеевича Лебедева.
Итак, так называемый разгром кибернетики был не более чем склокой философов-марксистов по поводу неправильно понятого значения термина кибернетика.

Среди главных тенденций современной науки чаще всего называют следующие:

1) интеграцию;

2) дифференциацию;

3) математизацию;

4) индустриализацию;

5) информатизацию.

В этом комплексе важных тенденций новейшего времени различимы как положительные, так и отрицательные стороны.

Интеграция науки. Под интеграцией понимают тенденцию объедине­ния научного знания. Наука, как и другие социальные сферы, тоже глоба­лизируется. Стираются границы между прежде совершенно различными дисциплинами. Это проявляется в различных формах.

A. Важнейшую роль играют процессы взаимодействия научных
областей. Современная наука богата различными плодотворными меж­дисциплинарными связями, которые связывают направления, ранее раз­вивавшиеся отдельно, — математику и лингвистику, физику и химию,
математику и экономику и т.п. Науки сходятся на едином изучаемом
объекте, на той или иной комплексной проблеме, обеспечивают одна дру­гую методологической базой, оказывают друг на друга эвристическое,
стимулирующее воздействие.

Б. Проявлением интеграции является, кроме того, отчётливое стремле­ние к унификации понятийного аппарата науки. В связи с этим в нашей философско-методологической литературе прошлых десятилетий активно обсуж­дался вопрос о т.н. общенаучных понятиях, примерами которых являются система, структура, энтропия, вероятность, алгоритм, информация.

B. Ярким выражением интегративной тенденции является то, что на
фоне общего массива наук периодически возникают и выдвигаются на
роль объединяющего центра определённые интегративные науки, в ко­торых производятся широкие и перспективные обобщения. Примерами
таких наук и научных подходов могут служить кибернетика, общая тео­рия систем, семиотика, теория информации, синергетика. Видимо, тяга
к единству научного знания столь сильна, что возникновение подобных
интегрирующих направлений всегда вызывает оптимизм учёных и фило­софов и сопровождается несколько завышенными ожиданиями.

Дифференциация науки. Это противоположно направленная тенден­ция дробления научных областей. Ко второй половине XX в. возникла масса тонких подразделений внутри наук (например, в физике: физика плазмы, физика твёрдого тела, механика сплошных сред и т.д.). Внутри наук нарастает специализация, приводящая к тому, что традиционно сло­жившаяся наука рассыпается на массу узких областей с собственной усложнённой терминологией и проблематикой, отделённых друг от друга профессионально-институциональными заслонами. Так, в наше время в одной только геологии насчитывается не менее 80 дисциплин! Все это вызвано объективным требованием концентрации усилий учёных на то­чечных участках, и, конечно, это в значительной мере повышает эффек­тивность научного поиска. Действительно, сегодня мы видим продолжаю­щийся прирост специальных знаний. Но существуют и отрицательные следствия — утрата стратегического видения научного продвижения, за­труднение взаимопонимания учёных, нарастание потерь информации (фе­номены пересечения одних и тех же результатов в разных направлениях, невостребованность узких знаний высокоспециализированных научных областей). Сегодня многие исследователи высказывают свои опасения по поводу того, что дифференциация в ряде научных областей явно преоб-

ладает над интеграцией. Например, в отношении медицинской науки эту точку зрения проводят Ю.П. Лисицын и В.П. Петленко1.

Математизация. Это одна из центральных тенденций современной науки, набравшая особую интенсивность во второй половине XX в. Мате­матизация — это проникновение математических подходов и методов в другие области научного познания. Общеизвестна огромная роль точ­ных методов, математического моделирования, вычислительных экспе­риментов. Помимо естественных наук, которые существенно связаны с математикой, явление математизации коснулось и гуманитарных наук — истории, социологии, лингвистики и др. Интересные перспективы внедре­ния математики в гуманитарное знание связаны с разработкой новых не­количественных подходов в ряде математических направлений — теории множеств, топологии, теории графов и других, позволивших подойти к бо­лее точному изучению качественных аспектов и соотношений. Более общей стратегией, заключающейся в том, что научная проблема перево­дится на уточнённый искусственный язык, является формализация (§ 2.7). Общий принцип формализационных подходов был разработан в матема­тической логике. Формализация является также одним из опорных мо­ментов тенденции информатизации, о которой речь пойдёт чуть ниже.

Заметим, однако, что к концу XX в. стала заметна некоторая утрата опти­мизма в отношении возможностей математизации. Это, конечно, не означает приостановки данной тенденции, просто отношение к ней стало сдержаннее по сравнению, скажем, с периодом 1950-1970-х гг. Более осторожно стали относиться к таким направлениям, как, например, распознавание образов, оп­тимизационные методы, теории принятия решений, математическое модели­рование (по поводу моделирования см. § 2.5). Критики наряду с признанием несомненных достоинств математизации в большинстве её разновидностей тем не менее указывают, что существует ряд серьёзных ограничений в ис­пользовании математических методов. Так, часто затруднён процесс интер­претации и экстраполяции полученных результатов; слабо осуществляется взаимопонимание разработчиков моделей — математиков и нематематиков; существуют серьёзные вычислительные трудности; перевод проблем на язык чисел «размывает» содержательную основу принятия решений. В ряде об­ластей не оправдались надежды на конструирование имитирующих техниче­ских систем, способных конкурировать с профессиональной деятельностью человека. Не совсем оправдали себя и математические подходы в гума-

1 Так, Ю.П. Лисицын и В.П. Петленко настаивают на том, что современной медицине необходима единая концептуальная система понятий, которая могла бы служить основой научного врачебного мышления. В роли такой системы они видят детерминационную тео­рию медицины. Лисицын Ю.П., Петленко В.П. Детерминационная теория медицины. СПб., 1992.С. 23.

нитарном регионе. Все это говорит о том, что математика, конечно, имеет границы своих приложений-. Сегодня более чётко осознается то, что матема­тизация науки не является самооправдывающимся предприятием, не может служить способом автоматического решения научных проблем. Видимо, новые перспективы науки будут связаны с более взвешенным подходом, с умелым сочетанием количественных и качественных методов. Иными сло­вами, новые достижения науки будут зависеть от наращивания содержа­тельной рациональности.

Индустриализация. Связи науки и техники приводят к взаимопро­никновению этих областей науки в технологию и технологии в науку. Сегодня наука опирается на мощную индустриальную базу. Для прове­дения экспериментов, наблюдений, исследований моделей теперь часто требуются, колоссальные специализированные установки и коллективы обслуживающего персонала.

Разумеется, эта тенденция также имеет не только положительные сторо­ны. Скажем, в гуманитарных науках привычка организовывать исследова­тельский проект масштабно, на основе солидного финансирования приво­дит, как отмечают некоторые критики, к снижению собственно креативной составляющей поиска; в некотором смысле здесь организационная практика начинает доминировать над, собственно, познавательной. Поэтому нередко широкомасштабные, технически оснащённые и дорогие программы исследо­ваний приводят парадоксальным образом к скудным научным результатам.

Информатизация. Информатика — группа дисциплин, занимающихся изучением и совершенствованием информационных процессов и обслужи­вающих их технических систем. Информатизация — это использование современных информационных технологий, их постоянное совершенствова­ние во всех важнейших областях человеческой деятельности — науке, управ­лении, образовании, производстве и т.п. Как известно, главными событиями информатизации явились микропроцессорная революция 70-х гг. XX в., разработка стандартной модели IBM PC с открытой архитектурой в начале 1980-х гг. и становление доступной для массового потребителя гло­бальной компьютерной сети Интернет в 1990-е гг. Информатизацию науки можно считать специальным случаем её общей индустриализации. Сегод­ня компьютер является необходимым инструментом в любых областях на­уки. Он включается во все стадии работы: в поиск базовой информации по теме, планирование эксперимента, управление процессом экспериментиро­вания, теоретический анализ, предоставление результатов, научную ком­муникацию и т.п. Информатизация резко повышает возможности человека, позволяет ему осилить чрезвычайно сложные задачи.

Однако, говоря об общеизвестных достоинствах компьютеризации, сле­дует отметить и ряд негативных моментов. Успехи информатизации заста­вили человека слишком доверять машине. Возникает тенденция трактовки

тех или иных ситуаций (управленческих, познавательных и т.п.) в терминах компьютерных возможностей, т.е. ориентация на то, как эта ситуация будет проанализирована машинным способом; принятие решения в этом случае прямо связывается с тем горизонтом, который охватывается ком­пьютерными технологиями. Кроме того, ситуация в ряде областей человеческой деятельности показывает, что, к сожалению, в них наметилась опреде­лённая тенденция снижения собственного профессионализма пользователей информационных систем: человек перестаёт проявлять инициативу в обуче­нии, анализе обстановки, принятии решений. Между тем всегда существу­ют нестандартные ситуации, которые не могут быть предусмотрены в прог­рамме. Критики отмечают, что в раде крупных аварий и катастроф последнего времени сыграла свою роль и повышенная вера в машину, утрата личной инициативы и ответственности. Общая ориентация на технические системы и подходы, связанная с компьютеризацией науч­ных исследований, ведёт к унифицированности, обезличенности исследовательского мышления, способствует формализаторскому крену. При этом снижается уровень качественного, собственно человеческого ви­дения проблемы (ценностно-ориентированного, смыслового, неформаль­ного), что особенно неоправданно в социально значимых областях — меди­цине и здравоохранении, экономике, педагогике, политике и др. В итоге забывается, что машина является лишь вспомогательным средством чело­веческой деятельности и что единственным (и никем не заменимым) субъек­том познавательной деятельности и принятия решений является человек1.

Сложность и многогранность профессии современного учёного

Современный учёный не просто специалист, обладающий знаниями в какой-то узкой области. Сегодня круг задач, являющихся неотъемлемой частью его профессии, весьма широк. Охарактеризуем вкратце эти задачи.

Ранее говорилось о необходимости владеть современными информаци­онными технологиями. Профессия учёного предполагает также знание основ библиографии как особой прикладной отрасли знания. Сюда входит умение находить необходимые сведения о публикациях, потреблять библиграфическую информацию, грамотно оперировать ею. Существуют общепринятые правила цитирования, библиографических ссылок и описаний.

Важная часть деятельности учёного — текстовая работа, создание собственных научных текстов. Ведь стержень современной науки — пуб­ликация. Сегодня прирост и функционирование научного знания держит­ся на публикациях. Публикация является как бы квантом прироста нового

1 Содержательная критика негативных тенденций информатизации дана в: Бирюков Б.В., Эджубов Л.Г. «Кризис жанра» или временные трудности? (Подводные камни на пути гумани­тарной информатики)//Вопросы философии. 1992. № 6. С. 75-90.

знания. Идеи, разработанные учёным, вводятся в оборот научного сооб­щества только после их публикации, проверки, подтверждения и приня­тия в циклах других исследований и отражающих их изданий. Сегодня предлагают рассматривать современное научное знание как гигантский гипертекст, связывающий перекрёстными «нитями» отдельные публика­ции в единое информационное пространство. Ясно, что в этих условиях от учёного требуется особое умение писать, т.е. знать и правильно ис­пользовать общепринятые в науке нормы оформления научных текстов, учитывать стилевые особенности публикаций. Комплекс принятых стиле­вых стандартов иногда называют научной грамматикой. Она тоже явля­ется необходимой частью общей подготовки учёного. Так, в некоторых научных и учебных заведениях даже читают курсы для начинающих учё­ных под названием scientific writing «научное письмо».

Существенное место в научной информации занимает и патентная до­кументация. Это совокупность документов, включающих сведения об изобре­тениях, открытиях и других видах интеллектуальной собственности. Сущест­вует специальная отрасль знания — патентоведение, которая занимается вопросами правового обеспечения интеллектуальной собственности. Па­тентная документация включает как юридические, так и научно-технические темы. Патентной документации должны быть присущи такие черты, как вы­сокая степень достоверности, оперативность, полнота сведений. Профессио­нальная разработка научно-исследовательской темы сегодня невозможна без предшествующей стадии патентных исследований, включающих поиск, анализ, целенаправленное потребление патентной информации.

Говоря об умении обращаться с интеллектуальной собственностью в более широком контексте, следует указать на чрезвычайную важность правовой компетентности современного учёного. Это касается знания таких вопросов, как авторское право и его защита, приоритет, акаде­мические права и свободы и др. Как известно, вопросы правового обес­печения научной деятельности являются весьма деликатными и болезнен­ными для учёных (вспомним, например, такие острые темы, как плагиат, некорректное цитирование, споры о приоритете).

Учёный часто выполняет функции организатора научных исследова­телей и их руководителя, что требует от него наличия определённых на­выков и знаний из области менеджмента как теории управления. Многие учёные сочетают собственно познавательную деятельность с пре­подавательской, которая, но сути дела, является самостоятельной про­фессией (для неё нужны специальные умения и постоянный личный профессиональный рост). Помимо работы в системе формального образо­вания, учёный обычно имеет возможность (особенно в достаточно зрелом возрасте) влиять на более молодое поколение неформальным способом, к которому лучше всего подходит название «наставничество».

Укажем также на значимость этической компетентности современно­го учёного, на необходимость принятия этически важных решений, участия в различного рода этических обсуждениях и, может быть, экспертизах по теме его научных интересов. О роли этики в современной науке речь подробнее пойдёт в § 6.3.

В эпоху демократической государственности учёные становятся социаль­но активными, включаются в обсуждение и решение общественных проблем. Они должны уметь выступать перед широкой публикой, выпол­нять различные социальные функции, связанные с их знаниями в научных областях. Учёные часто входят в правительственные структуры, участвуют в государственных комиссиях, выполняют различные заказы, дают оцен­ки, разрабатывают и реализуют проекты и программы. Кроме того, уче­ные должны уметь отстаивать свои права, объяснять обществу, зачем нужны их исследования, обосновывать свои притязания на финансирова­ние собственных проектов и настойчиво добиваться выделения средств у фондов и государственных структур.

Все это — примеры разносторонней деятельности современного учёно­го. Сегодня далеко не каждый учёный может позволить себе роскошь быть кабинетным затворником. В наше время необходимость предельно концен­трироваться на занятиях своей предметной областью сочетается с необхо­димостью заниматься различными делами почти одновременно.

Сегодняшний характер роста научного знания таков, что следует, по­жалуй, говорить не о динамичном, а о сверхдинамичном развитии множе­ства научных областей. Текущие обзоры, отражающие оригинальные ста­тьи за определённые временные интервалы, в этих областях почти сразу устаревают. Для активно работающих учёных существует весьма реаль­ная опасность устареть самим, т.к. в бурно развивающихся научных направлениях методы, научные результаты и концепции быстро утрачи­вают действенность. Утрата контакта с передним фронтом исследований означает для современного учёного просто выключение из актуального научного продвижения. Это придаёт особенно сложный характер профес­сии современного учёного и выдвигает перед научным работником зада­чу быть всегда современным, востребованным, информированным, опе­ративно реагирующим, обновляющимся.

6.2. Модернизация общественной жизни: достижения и проблемы

Бурное развитие науки в XX в. привело к радикальным изменениям во всех сферах общественной жизни. Эти изменения столь многогранны и противоречивы, что дать им однозначную оценку не представляется

возможным. Отношение общественности к результатам научной деятель­ности тоже достаточно сложное. В прежние времена наука оценивалась как, безусловно, прогрессивное явление. Скажем, ещё в 60-70-е гг. XX в. в ходу был термин научно-технический прогресс. В отечественной лите­ратуре того периода излюбленной темой была также тема научно-техни­ческой революции. Для последних двух десятилетий характерно, напро­тив, более сдержанное отношение к науке и её плодам. Поэтому, говоря о влиянии науки на глобальные процессы общественной жизни, разумнее было бы, видимо, не использовать для его обозначения какие-то явно оце­ночные категории, а употреблять относительно нейтральный термин «мо­дернизация общественной жизни», понимая под этим сложное явление, которое подлежит вдумчивому изучению.

Особенности науки XX века

Скажем вначале несколько слов об уже обратившем на себя, вероятно, внимание читателя фактическом ограничении круга научных дисциплин, привлеченных нами к анализу воздействия науки на развитие философии. Здесь по преимуществу говорится о физике и о ее воздействии на другие дисциплины и отрасли знания. Общая картина современной науки может быть результатом ее анализа с различных точек зрения. Среди них имеет право на существование и анализ воздействия современной физики на познание в целом. Основа такого подхода – в особом, характерном для нашего времени, места физики в общей системе развивающегося знания. Это, конечно, не единственный аспект; для современной науки весьма характерно и то, что можно назвать гуманитаризацией, – возрастание удельного веса общественных проблем и растущее воздействие разработки общественно-научных проблем на естествознание. Однако и преимущественное внимание в данной книге к естественнонаучным и даже еще уже – физическим проблемам не лишает анализ общенаучного значения и права говорить о взаимосвязи науки и философии.

Роль физики в современной науке не похожа на роль механики в XVII-XVIII веках, когда механические законы претендовали на место того носителя космической гармонии, к которому в последнем счете сводятся все закономерности бытия. Но физика занимает в современной науке совсем иное место и по сравнению с XIX веком. Тогда физика противостояла диктатуре механики и, подобно другим дисциплинам, утверждала несводимость и специфичность своих законов. Сейчас она объединяет микромир и мегамир и в этом смысле, не покушаясь на специфичность других дисциплин, создает неклассическое представление о иерархии бытия, в которой Метагалактика сближается с элементарными частицами. Генезис такой, неизвестной прошлому, картины мира имеет важное значение для выяснения связи науки и философии. Подобная связь в определенной степени является импульсом и вместе с тем результатом распространения понятий современной физики на другие отрасли знания.

Такой процесс можно наблюдать, например в биологии, которую иногда считают преемницей физики, сменяющей ее на посту лидера науки. Если подобная перспектива в каком-то смысле реальна, то она совсем не означает вторжения биологических понятий, закономерностей и методов в физику. Вместе с тем указанная перспектива в основном связана с развитием молекулярной биологии, которая гораздо ближе в своих тенденциях и прогнозах к квантовой физике, чем к классической макроскопической биологии. Молекулярная биология – пример очень общей тенденции современной науки, тенденции, которую можно было бы назвать физи-кализацией науки, правда с одним существенным уточнением: такое название целиком относится к неклассической физике.

К этому следует добавить, что физикали-зация означает явное устранение из научной картины мира каких бы то ни было неизменных, априорных сущностей, ибо современная физика, объединившая космос и микрокосм, не оставляет ничего, что могло бы считаться «зафизической» (шире – «занаучной») сущностью мира. Никогда еще так ясно, как в современной науке, не было продемонстрировано, что субстанция неотделима от своих проявлений.

Следует подчеркнуть, что характеристика современной физики может быть лишь детализацией и демонстрацией эволюции общих особенностей науки XX века. Такие более общие особенности являются особенностями неклассической науки в отличие от классической. Но ответ на вопрос: «Что такое наука XX века?» – включает и другое – определение зависимости самого периода истории от состояния науки. Уже в XVII-XVIII веках эта зависимость была явной, а в XIX веке она стала в значительной мере определяющей. В 1886 году на чествовании французского химика-органика М. Шевреля (ему исполнилось сто лет) К. А. Тимирязев сказал юбиляру: «Дитя века разума, Вы – живое воплощение века науки».

Действительно, век разума, XVIII век, был периодом, когда идеи великих рационалистов предыдущего столетия приобрели историческое бытие и стали оказывать решающее воздействие на реальные судьбы людей. В этом столетии английская промышленная революция превратила рациональную схему мироздания – классическую механику в научную основу машинной индустрии. В этом же столетии плеяда великих мыслителей-рационалистов привлекла к суду отвлеченного разума все общественные институты, и вскоре Великая французская революция исполнила его приговор.

В XIX веке рационализм воплотился в систему представлений – стройную, детально разработанную, проверенную экспериментами и практикой. Эта система казалась непоколебимой в своих основах, хотя и претерпевала глубокие изменения. В XIX веке люди узнали о неевклидовой геометрии, в которой перпендикуляры к одной и той же црямой пересекаются или, наоборот, расходятся. Они узнали много нового и о себе. Общественные отношения, которые представлялись незыблемыми, оказались преходящими, чреватыми социальными революциями.

Наука в этот период знала о подвижности своего русла, о его поворотах. Представления о таких поворотах были обобщены в диалектической философии. Но повороты были более или менее спорадическими. Они позволяли науке забывать о них в течение долгих периодов сравнительно спокойного развития. И, что самое главное, они не оказывали быстрого и непосредственного воздействия на жизнь людей. Наука в течение десятилетий как бы отдыхала от каждого потрясения, спокойно развивая новые принципы, которые снова, как и прежние, уже ушедшие в прошлое, казались непоколебимыми. Результаты науки приобретали ореол очевидности, и стиль научного мышления в целом не был парадоксальным. В той или иной мере парадоксы всегда были свойственны науке. В свое время мысль об антиподах, живущих на другой стороне Земли, на «нижней» ее стороне, и не падающих «вниз», была невероятно парадоксальна. Парадоксальными были представления о движении Земли, об изменении видов живых существ. Но старые парадоксы исчезали, они растворялись в научном знании, претендовавшем на очевидную правильность.

XX век начался неисчезающими научными парадоксами. Наука XX века как бы для того, чтобы оправдать подобное хронологическое название, может начать свою историю с 1900 года, когда М. Планк нашел, что излучение света происходит не непрерывно, а минимальными порциями, квантами. Вскоре, в 1905 году, А. Эйнштейн разъяснил, почему свет распространяется с одной и той же скоростью относительно тел, движущихся навстречу световому лучу, и относительно тел, которые лучу приходится догонять.

Сейчас, почти столетие спустя, подобные парадоксы должны были стать трюизмами. Этого не случилось. Парадоксы квантовой теории и теории относительности переставали быть парадоксами только при переходе науки к еще более парадоксальным утверждениям. Началась цепная реакция парадоксов. Вскоре после Планка выяснялось, что свет не просто излучается порциями, но и состоит из частиц – квантов света, фотонов. А представление о неизменной скорости света привело к еще более парадоксальным утверждениям об изменении массы тела в зависимости от скорости его движения, о возможности освобождения очень большого количества энергии при уменьшении массы тела, о превращении частиц с ненулевой массой покоя в излучение, в частицы с нулевой массой покоя, о кривизне пространства, о расширяющейся Вселенной.

Цепная реакция парадоксов оказала большое влияние не только на стиль научного мышления, но и на бытие людей, на технику, на производство, на цивилизацию в целом. В науке XIX века марши сменялись привалами. Антракты были длительнее, чем сами акты. Теперь пьеса идет без антрактов, повороты науки настолько радикальны, что их воздействие продолжается долго, причем не замедляется, не затухает, а ведет к новым, еще более парадоксальным утверждениям. Для науки XX века характерен безостановочный марш.

Соответственно изменилось понятие великого открытия. Раньше величие научного открытия измерялось длительностью сохранения его фундаментальной роли. Великим открытием считали результат эксперимента или обобщение, приводившее к новой научной теории, надолго, быть может, навсегда, сохранившей неизменной свою классическую форму и служившей фундаментом для столь же прочных выводов. Сейчас величие открытия измеряется его динамическим воздействием на науку, радикальностью и общностью его резонанса, вызванных им дальнейших открытий, дополняющих, модифицирующих и изменяющих его. Рассказать о таких великих, фундаментальных открытиях – значит рассказать об их резонансе.

В науке XX столетия меняется область, в которой получают фундаментальные открытия или ждут их. Сейчас, в последней четверти века, преимущественно ждут: значение той или иной области науки определяется прогнозом, тем преобразованием картины мира, которого можно ожидать от ведущихся в этой области исследований.

В начале столетия такой областью стала электродинамика, затем – атомная физика, потом – физика атомного ядра. Теперь ею стала физика элементарных частиц и астрофизика. Сейчас на Земле начался атомный век – результат великих открытий первой половины XX века в области ядерной физики. Можно думать, что развитие теории элементарных частиц приведет к открытиям, которые станут в XXI веке основой после-атомной цивилизации.

Для XX века характерна огромная концентрация материальных и интеллектуальных усилий общества, направленных на развитие науки. Поражают масштабы общественного труда, уделяемого исследованию природы. Наблюдаются несопоставимые с прошлым темпы роста числа ученых, уже в начале века во много раз превзошедшие темпы роста числа представителей остальных профессий. Если так пойдет и дальше, то число ученых превысит число остальных людей на Земле. Может быть, это будут кибернетические роботы? Такой прогноз оставим авторам фантастических романов о будущем. Впрочем, наверное, и они не воспользуются им. Кибернетика не заменяет человека комбинацией электронных приборов, а вооружает его и позволяет ему сосредоточиться на наиболее достойной человека деятельности, на творчестве, на все более глубоком познании природы, на все более разумном подчинении природы целям человека. Но, может быть, необычайно быстрый рост научных кадров отражает начальный этап современной эволюции науки и впоследствии число ученых будет расти медленнее. По-видимому, в течение оставшихся лет XX века и в следующем столетии будет происходить с нарастающей скоростью более глубокий и органичный процесс включения исследовательских задач в содержание труда. При быстром и радикальном изменении технологии, основанном на переходе к принципиально новым физическим процессам, производство, его реконструкция и эксперимент сливаются воедино.

В XX веке человечество уделяет науке все большую часть своих трудовых ресурсов и в том смысле, что во много раз выросли масштабы экспериментальных установок. В 1610 году Галилей опубликовал результаты своих астрономических наблюдений, и это явилось началом астрономической революции. Ныне человек посылает в космос автоматические и обитаемые астрофизические обсерватории, лаборатории и вскоре, вероятно, разместит наблюдательные приборы на орбитах планет земной группы, а может быть, и на их поверхности.

Взгляд человека, направленный не в космос, а в микромир, – это также и широкие народнохозяйственные акции, связанные с большими затратами общественного труда. Чтобы «разглядеть» процессы, происходящие в областях порядка 10-15 см и 10-25 сек., необходимы колоссальные энергии частиц, бомбардирующих другие частицы и атомные ядра. Подобные масштабы энергии встречаются в космических лучах. Но ученым нужно свободно маневрировать высокими энергиями. Очень высокие, хотя и не столь огромные энергии получают в гигантских ускорителях элементарных частиц.

Вокруг таких ускорителей вырастают большие научные города. Когда говорят о научных центрах XVII века, в сознании возникает образ придворного кружка, где Галилей критикует аристотелевскую концепцию мироздания. Научный центр XVIII века ассоциируется с уединенным кабинетом Лагранжа, где он пишет формулы аналитической механики. Научный центр XIX века – это уединенная обсерватория или лаборатория Фарадея, где он в одиночестве наматывает проволоку на железный сердечник, или (в конце века) зал Сорбонны, где Пуанкаре излагает законы небесной механики, или Петербургский университет, где Менделеев рассказывает о периодическом законе.

Научный центр XX века – это большой город (его по традиции еще называют городком), где тысячи людей трудятся, чтобы найти новый элемент периодической таблицы или новую элементарную частицу.

Как же назвать XX век в его зависимости от науки? Веком атома? Веком космоса? Веком кибернетики?… Список возможных названий можно было бы значительно расширить. В литературе мелькают и другие названия: «век полупроводников», «век информации», «век биологии».

И действительно, разве не атомная энергия дала человеку новую энергетическую базу производства и разве не ее открытие явилось вместе с тем открытием еще более мощной силы – силы ассоциированной науки? Разве не атомная энергия внушила человечеству самые радужные надежды и самые тяжелые опасения?

А космические исследования, выход человека за пределы земной атмосферы – разве это великое событие мировой истории не характеризует наше столетие? А кибернетика? Ведь это она существенно влияет на характер труда, производства. Среди всех эпитетов нашего века, характеризующих специфику его науки, «век биологии» кажется особенно показательным. В середине столетия физиология, химия, физика, математика объединились, чтобы раскрыть загадку живого вещества и жизни. Если макроскопическое решение этой загадки в XIX веке позволило говорить о «веке Дарвина», то ее микроскопическое решение – картина молекулы живого вещества и закодированной в ней наследственности организма – дает право назвать наше столетие веком молекулярной биологии и ее неисчерпаемых результатов в генетике, медицине и т. д.

Но каждый из претендентов на обобщающее название века все же кажется недостаточным. И не потому, что наряду с атомной энергетикой выросли кибернетика, молекулярная биология, космические исследования. Перечисленных названий недостаточно потому, что между всеми отмеченными в них тенденциями существует глубокая связь и по исходным теоретическим позициям и экспериментальным данным, и по стилю научного мышления, и по экономическому и культурному эффекту. Забегая вперед, ограничимся кратким замечанием об общем эффекте науки XX века, характерном для всех отраслей производства, для культуры и стиля мышления. Этот эффект – несравнимый с прошлым динамизм развития различных областей общественной жизни, непосредственно зависящий от характера современной науки.

Наука XX века – прежде всего неклассическая наука. И не только потому, что она отказалась от классических устоев, претендовавших на окончательный и абсолютно точный характер. Она неклассическая по своему стилю. Именно поэтому она приводит не только к незатухающей скорости научно-технического прогресса. Она ускоряет и технический, и культурный прогресс.

В «Рассуждениях о науках и искусствах» Ж. Ж. Руссо вспоминал о пришедшей из Египта в Древнюю Грецию легенде о боге, создавшем науку. Этот бог, говорит легенда, был врагом человеческого спокойствия. Различие между наукой XX и XIX веков состоит в том, что старая наука не так явно и не так непрерывно «беспокоила» человечество, не так явно демонстрировала враждебную человеческому спокойствию тенденцию своего легендарного создателя. Динамизм науки в XX веке отчетливо виден, если сравнить то, что она получила от предыдущего века, и то, что она передаст следующему.

К концу XIX века сложилось довольно устойчивое представление о мире. В его основе лежала классическая механика, законы Ньютона, которые казались непоколебимыми. На них наслаивались законы физики. Они были несводимы к механике. В термодинамике не обращали внимания на поведение отдельной молекулы, а интересовались лишь средними скоростями молекул, т. е. температурами. Было известно, что тепло переходит от тел с более высокой температурой к телам с менее высокой температурой и, таким образом, температура выравнивается. Поэтому в теории тепла существовало понятие необратимого процесса: с течением времени в изолированной системе необратимо возрастает равномерность распределения тепла, то, что называется энтропией. Этим теория тепла явным образом отличается от механики, где все процессы могут идти и в обратном направлении. Отличаясь от механики, термодинамика, изучающая поведение больших множеств молекул, не могла в своей физической расшифровке полностью оторваться от кинетической теории, рассматривающей движение и соударение отдельных молекул, при котором, согласно общему убеждению, они целиком подчиняются законам механики, законам Ньютона.

В электродинамике центральным понятием было понятие электромагнитного поля. Магнитное поле вызывается изменением электрического поля, электрическое – изменением магнитного поля. Поэтому, когда где-нибудь возникает переменное электрическое поле, оно индуцирует магнитное, которое в свою очередь оказывается переменным, индуцируя электрическое поле, и тем самым начинают распространяться электромагнитные колебания. К концу XIX века уже было известно, что частям видимого спектра соответствуют электромагнитные волны различной частоты, причем электромагнитные волны с большей частотой, чем те, которые дают фиолетовый свет, – это невидимое ультрафиолетовое излучение, а за волнами меньшей частоты, дающими видимый красный свет, простирается область электромагнитных волн еще меньшей частоты – невидимое тепловое, инфракрасное излучение. В самом конце века стали известны волны с еще большими частотами, чем в ультрафиолетовой части спектра, – рентгеновские лучи и гамма-излучение радия. За инфракрасными лучами были открыты волны во много раз меньшей частоты и соответственно с большей длиной волны – радиоволны, нашедшие применение в последние годы прошлого столетия.

Электродинамические и оптические процессы ученые стремились объяснить по аналогии с механическими процессами. Основой этой тенденции была гипотеза эфира. Волны в эфире – это свет и все другие электромагнитные волны. Таким образом, понятие электромагнитного поля как будто не выходило за рамки механического представления о телах, которые передвигаются в пространстве, притягивая и отталкивая друг друга, не выходило за рамки простой, непротиворечивой, традиционной картины мира.

Гипотеза эфира была как бы выражением «викторианской» тенденции в науке. Имя долго царствовавшей английской королевы Виктории стало в XIX веке символом традиционности и устойчивости. В науке было немало «викторианских» понятий, исключавших «беспокойство». С их помощью приходили к выводу, что она развивается путем непротиворечивой логической и экспериментальной конкретизации некоторых абсолютно устойчивых исходных аксиом. По это не всегда удавалось. В частности, эфиру приходилось приписывать весьма противоречивые свойства. С ним было много хлопот. М. Планк говорил, что эфир – это «дитя классической физики, зачатое во скорби».

Очень тяжелым испытанием теории эфира была невозможность зарегистрировать движение тел относительно эфира. Если тела при своем движении увлекают эфир, то свет должен распространяться в движущейся системе с одинаковой скоростью туда и обратно (как пловец в бассейне на движущемся корабле будет пересекать этот бассейн в длину с одной и той же скоростью, проплывая это расстояние за одно и то же время и вперед – по движению корабля, и назад – от носа корабля к корме). Но в данном случае свет будет распространяться в этой системе с иной скоростью, чем его скорость в недвижущейся системе, т. е. в неподвижном эфире, и различие можно будет заметить. Если же движущиеся тела не увлекают эфир, то свет будет распространяться с различной скоростью вперед и назад в движущейся в эфире системе (как пловец будет с различной скоростью плыть вперед и назад в движущемся решетчатом бассейне, сквозь который свободно проходит не увлекаемая бассейном вода).

Однако многочисленные эксперименты не продемонстрировали разницы скорости света ни по отношению к данной системе, ни по отношению к внешнему пространству. Таким образом, оба предположения оказались экспериментально не подтвержденными. Нельзя говорить, что тела при своем движении увлекают эфир, и нельзя говорить, что тела движутся в эфире, не увлекая его. Мы вернемся к этой коллизии немного позже, при характеристике теории относительности. Пока же отметим, что в конце XIX века эта ситуация внушала смутные опасения, но не давала повода для решительного отказа от эфира, не укладывавшегося в норму поведения, свойственную обычным телам.

В целом наука XIX века склонялась к мысли о законченной картине мира, к представлению о том, что эта картина мира завершена в ее фундаментальных основах. Английский физик Дж. Дж. Томсон утверждал, что науке осталось лишь уточнять детали, поскольку в основном человек уже знает, как устроен мир. Конечно, такой крайний взгляд не был общим. Многие понимали, что перед наукой бесконечный путь преобразования фундаментальных идей. Но и сам Томсон, говоря о безоблачном небе науки, указывал на два облака: затруднения теории теплового излучения и отсутствие изменения скорости света в движущихся телах. Из этих облаков и грянул гром. А пока он не грянул, наука XIX века могла к окончанию столетия предъявить весьма внушительную схему мироздания.

В основе этой схемы лежит идея сохранения основных законов бытия при переходе от одного звена иерархии вещества к другим, от атома к молекуле, от молекулы к макроскопическим телам, в частности к живому организму, затем к планетам, к солнечной системе, к звездам, к галактике.

В начале этой иерархии находится атом. Атомы считались твердыми шариками, обладающими различной массой и различными физическими и химическими свойствами. Было известно несколько десятков различных типов атомов, различных элементов, входящих в периодическую таблицу. На исходе столетия стали известны электроны – минимальные заряды электричества. Возникло представление о субатомах – частицах меньших, чем атом. Такими частицами служили электроны. Это, однако, не могло нарушить спокойствия. Принципиальная возможность дальнейшего перехода к телам «меньше атома» и «больше галактики» всегда допускалась. Еще в начале нашего столетия по поводу электронов повторяли старые концепции бесконечной иерархии, которая тянется в обе стороны, причем структура все больших включающих и все меньших включенных систем одна и та же.

Второе звено иерархии – молекула. В течение XIX века химия узнала о структуре громадного количества сложных веществ и определила состав их молекул. О природе сил, связывающих атомы в молекулы, знали так же мало, как о природе различий между атомами. Но об этом не слишком беспокоились. Наука могла идти вперед, не углубляясь в эти вопросы. То же можно сказать и о больших, включающих системах. Что касается живых организмов, то наука всесторонне изучила макроскопические законы естественного отбора, но остановилась перед проблемой наследственности и изменчивости организмов. Благодаря Г. Менделю стали известны некоторые законы наследственности, но природа их не была раскрыта. Теория Дарвина представлялась мощной демонстрацией универсальности классической науки. Она показала, что материя, состоящая из дискретных частей, обладающих свойствами притяжения и отталкивания и подчиняющихся в своем поведении законам классической механики, может эволюционировать и дойти до высокоорганизованных структур, до той целесообразности, которая всегда поражала людей при взгляде на органический мир.

Дальше простирались еще более высокие звенья иерархии – солнечная система, само Солнце, еще дальше – звезды, а еще дальше – внегалактические туманности, иные галактики. Этот мир казался царством Ньютона. Однако и здесь были некоторые недоразумения. Вселенная представлялась бесконечной, и в этом случае небесным телам угрожали бесконечно большие силы тяготения, действующие в бесконечной по протяженности, заполненной тяжелыми телами Вселенной. Свет бесконечных звезд должен был превратить небо в сплошную сверкающую пелену. Но идея конечности доступной исследованию Вселенной не возникала.

В целом XX век застал очень стройное и, казалось, достоверное в своей основе здание науки предыдущего столетия. В XX веке это здание не было разбито. Оно только зашаталось, и научная революция нашла для него новый фундамент, на котором старые знания получили ограниченное место. Это следует подчеркнуть. Научная революция не была очищением площадки для нового строительства. В науке не бывает катаклизмов, которые Ж. Кювье видел в прошлом Земли. История науки – непрерывный процесс. Н. Бор в начале нашего столетия, создавая модель атома, выдвинул принцип соответствия: при некоторых предельных условиях соотношения квантовой механики переходят в соотношения классической механики. Теория относительности Эйнштейна в случае медленных движений и процессов, при которых поглощаются или выделяются не слишком большие энергии, приходит к соотношениям механики Ньютона. Наука XX века подошла к классическому наследству как к совокупности теорий, уже не являющихся абсолютно справедливыми, абсолютно точными и абсолютно общими. Они становятся относительными и ограниченными, но получают более солидное обоснование.

Что застает в науке XXI век? Об этом трудно сказать – развитие науки приобрело такую стремительность, что за оставшиеся два десятилетия может произойти много неожиданного. Но кое-что можно сказать с большой достоверностью.

Как уже говорилось, XX век застал науку в виде стройного здания, претендующего на длительное сохранение без дальнейших перестроек. XXI век застанет науку далеко не в столь законченном и стройном виде. Здесь мы подходим, быть может, к самой важной особенности науки нашего века.

В начале столетия наука нашла для своего здания не только новые свободные площадки и не только методы перестройки старых сооружений, но и более глубокий и прочный фундамент. Но оказалось, что под этим новым фундаментом скрывается еще один. И по-видимому, отныне нельзя было строить только вверх, воздвигая все новые этажи. Наука должна была все более опускаться вниз, ко все более глубоким фундаментальным основаниям. И вот эти, очевидно, бесконечные поиски все более глубокого и прочного фундамента и встретит XXI век.

В самом деле, в течение XX века наука раздвинула мироздание вширь. Новая астрономическая революция позволила узнать много совершенно неожиданного о галактиках, находящихся от нас на расстояниях в миллиарды световых лет. Но дело не в этих масштабах. Мы знаем, что структура и эволюция Вселенной не могут быть познаны без дальнейшего коренного фундаментального преобразования основных физических принципов, основных принципов математики, без преобразования самой логики. Они не могут быть познаны и без нового представления об элементарных частицах. И здесь пафос современной науки не в том, что мы изучаем процессы в областях порядка 10^-15 см и 10^-25 сек., а в том, что здесь кончается путь, которым наука шла до сих пор, когда природу тела объясняли ссылкой на его внутреннюю структуру, на расположение и движение меньших частиц, входящих в его состав.

Мы теперь знаем о возможности существования малой частицы, состоящей из более крупных. Это совершенно парадоксальное для классической науки утверждение представляется весьма вероятным. Крупные частицы могут так сильно взаимодействовать одна с другой, что их совокупная масса уменьшится, и в результате перед нами окажется частица с очень малой массой, близкой к нулю. Появляется представление о частице, составленной из очень больших масс. Трудно сказать, к чему приведет развитие подобных идей. Но они иллюстрируют однозначный и достоверный прогноз: XXI век застанет в науке начавшийся процесс непрерывных поисков новых фундаментальных принципов. В этом великий вклад науки нашего века в историю цивилизации. Теперь уже покончено с представлением о неподвижном фундаменте науки, на котором меняется лишь надстройка. В современнои науке ремонт и расширение надстроек неотделимы от возведения нового фундамента.

Поделитесь на страничке

Следующая глава >

Наука 19 20 века

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *